Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Pharmacol Exp Ther ; 377(2): 265-272, 2021 05.
Article in English | MEDLINE | ID: covidwho-1234275

ABSTRACT

Drug-induced long QT syndrome (LQTS) is an established cardiac side effect of a wide range of medications and represents a significant concern for drug safety. The rapidly and slowly activating delayed rectifier K+ currents, mediated by channels encoded by the human ether-a-go-go-related gene (hERG) and KCNQ1 + KCNE1, respectively, are two main currents responsible for ventricular repolarization. The common cause for drugs to induce LQTS is through impairing the hERG channel. For the recent emergence of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, several drugs have been investigated as potential therapies; however, there are concerns about their QT prolongation risk. Here, we studied the effects of chloroquine, hydroxychloroquine, azithromycin, and remdesivir on hERG channels. Our results showed that although chloroquine acutely blocked hERG current (IhERG), with an IC50 of 3.0 µM, hydroxychloroquine acutely blocked IhERG 8-fold less potently, with an IC50 of 23.4 µM. Azithromycin and remdesivir did not acutely affect IhERG When these drugs were added at 10 µM to the cell culture medium for 24 hours, remdesivir increased IhERG by 2-fold, which was associated with an increased mature hERG channel expression. In addition, these four drugs did not acutely or chronically affect KCNQ1 + KCNE1 channels. Our data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns. SIGNIFICANCE STATEMENT: This work demonstrates that, among off-label potential COVID-19 treatment drugs chloroquine, hydroxychloroquine, azithromycin, and remdesivir, the former two drugs block hERG potassium channels, whereas the latter two drugs do not. All four drugs do not affect KCNQ1 + KCNE1. As hERG and KCNQ1 + KCNE1 are two main K+ channels responsible for ventricular repolarization, and most drugs that induce long QT syndrome (LQTS) do so by impairing hERG channels, these data provide insight into COVID-19 drug-associated LQTS and cardiac safety concerns.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Azithromycin/pharmacology , COVID-19 Drug Treatment , Chloroquine/pharmacology , ERG1 Potassium Channel/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/metabolism , Chloroquine/therapeutic use , Dose-Response Relationship, Drug , ERG1 Potassium Channel/metabolism , HEK293 Cells , Humans , Hydroxychloroquine/therapeutic use , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use
2.
PLoS One ; 15(11): e0234946, 2020.
Article in English | MEDLINE | ID: covidwho-1067385

ABSTRACT

The human ether-a-go-go-related voltage-gated cardiac ion channel (commonly known as hERG) conducts the rapid outward repolarizing potassium current in cardiomyocytes (IKr). Inadvertent blockade of this channel by drug-like molecules represents a key challenge in pharmaceutical R&D due to frequent overlap between the structure-activity relationships of hERG and many primary targets. Building on our previous work, together with recent cryo-EM structures of hERG, we set about to better understand the energetic and structural basis of promiscuous blocker-hERG binding in the context of Biodynamics theory. We propose a two-step blocker binding process consisting of: The initial capture step: diffusion of a single fully solvated blocker copy into a large cavity lined by the intra-cellular cyclic nucleotide binding homology domain (CNBHD). Occupation of this cavity is a necessary but insufficient condition for ion current disruption.The IKr disruption step: translocation of the captured blocker along the channel axis, such that: The head group, consisting of a quasi-rod-shaped moiety, projects into the open pore, accompanied by partial de-solvation of the binding interface.One tail moiety packs along a kink between the S6 helix and proximal C-linker helix adjacent to the intra-cellular entrance of the pore, likewise accompanied by mutual de-solvation of the binding interface (noting that the association barrier is comprised largely of the total head + tail group de-solvation cost).Blockers containing a highly planar moiety that projects into a putative constriction zone within the closed channel become trapped upon closing, as do blockers terminating prior to this region.A single captured blocker copy may conceivably associate and dissociate to/from the pore many times before exiting the CNBHD cavity. Lastly, we highlight possible flaws in the current hERG safety index (SI), and propose an alternate in vivo-relevant strategy factoring in: Benefit/risk.The predicted arrhythmogenic fractional hERG occupancy (based on action potential (AP) simulations of the undiseased human ventricular cardiomyocyte).Alteration of the safety threshold due to underlying disease.Risk of exposure escalation toward the predicted arrhythmic limit due to patient-to-patient pharmacokinetic (PK) variability, drug-drug interactions, overdose, and use for off-label indications in which the hERG safety parameters may differ from their on-label counterparts.


Subject(s)
ERG1 Potassium Channel/chemistry , ERG1 Potassium Channel/metabolism , Potassium Channel Blockers/pharmacology , Arrhythmias, Cardiac , Binding Sites , Cryoelectron Microscopy , Humans , Models, Biological , Models, Molecular , Potassium Channel Blockers/chemistry , Protein Conformation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL